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ABSTRACT 
 

In this paper, a methodology is presented for optimum shape design of double-layer grids 

subject to gravity and earthquake loadings. The design variables are the number of divisions 

in two directions, the height between two layers and the cross-sectional areas of the 

structural elements. The objective function is the weight of the structure and the design 

constraints are some limitations on stress and slenderness of the elements besides the 

vertical displacements of the joints. To achieve the optimization task a variant of particle 

swarm optimization (PSO) entitled as quantum-behaved particle swarm optimization 

(QPSO) algorithm is employed. The computational burden of the optimization process due 

to performing time history analysis is very high. In order to decrease the optimization time, 

the radial basis function (RBF) neural networks are employed to predict the desired 

responses of the structures during the optimization process. The numerical results 

demonstrate the effectiveness of the presented methodology. 
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1. INTRODUCTION 
 

For design of many structures, the horizontal components of the earthquake are more effective 

and vertical component in particular situations which earthquake code suggested, are 
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considered. For example in the case of structures with large spans the effects of the vertical 

component cannot be neglected. Double-layer grids are the most general structures that are 

used for covering large spans without interior columns, as a result for designing of these 

structures considering vertical component is necessary. 

As the dimensions and the number of structural elements of double-layer grids are usually 

very large, it is essential to evolve strategies for their optimal design. Optimal shape design of 

space structures with a large number of structural members leads to structures with less weight 

and cost and therefore the resulted structural systems appear very efficient. 

During last years, meta-heuristic search techniques have been emerged as more powerful 

computational optimization tools with respect to conventional gradient based methods. 

Meta-heuristics make use of ideas inspired from the nature. The basic idea behind these 

techniques is to simulate natural phenomena, such as survival of the fittest, immune system, 

swarm intelligence and the cooling process of molten metals through annealing into a 

numerical algorithm [1]. The optimum structural design algorithms that are based on these 

techniques are robust and quite effective in finding the solution of discrete programming 

problems. There are large numbers of such meta-heuristic techniques available in the 

literature nowadays [2-4]. One of the most popular ones is particle swarm optimization 

(PSO). Recently, a novel variant of the PSO, called quantum-behaved particle swarm 

optimization (QPSO) algorithm was proposed by inspiring quantum mechanics [5]. The 

QPSO possesses good global search ability and it is a promising optimizer for complex 

problems. In the present work, PSO and QPSO are selected as the optimizers. 

During the optimization process critical structural responses such as maximum deflection 

and stresses should not exceed the design codes’ requirements. Optimal design of such large-

scaled structures subjected to earthquake time history loading is very time consuming 

therefore to efficiently achieve the optimization task, it is necessary to somehow reduce the 

computational burden. One of the most popular techniques to simplify the complex problems 

and to considerably reduce the elapsed time is artificial intelligence, especially artificial neural 

networks. There are a huge number of publications in the field of neural networks’ 

applications in the structural engineering. For example, in the case of space structures Kaveh 

and Servati [6] used neural networks to design of double-layer grids subject to gravity loading. 

Salajegheh and Gholizadeh [7] employed three neural networks model to optimum design of 

space structures. Rajasekaran [8] employed a cellular genetic algorithm and neural network to 

optimize cross-sectional areas of space structures with fixed geometry. 

In the last years, a number of researchers employed meta-heuristics in conjunction with 

neural networks to perform optimization task of complex structures for earthquake loading 

spending a reasonable amount of time. Salajegheh et al [9] employed a binary model of PSO 

and neural networks to optimize truss structures for earthquake induced loads. Gholizadeh and 

Samavati [10] used wavelet transform and neural networks to decrease the computational 

burden of structural time history analysis for earthquake loading. They used an improved 

genetic algorithm (GA) to achieve optimization task. Gholizadeh and Salajegheh [11-12] 

integrated advanced neural network models with GA and PSO based meta-heuristic algorithms 

to fulfill structural optimization for earthquake loading. 

In this study, the PSO and QPSO with discrete variables are used for shape optimization 

of double-layer grids subject to vertical component of earthquake loading. The radial basis 
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function (RBF) neural network [13] is also used to predict the dynamic responses of the 

structures. The design variables of the optimization are the number of divisions in two 

directions and the height between two layers besides the cross-sectional area of the 

structural elements. The numerical results demonstrate that the computational performance 

of the QPSO is better than that of the PSO and also by using the neural networks the time of 

optimization can be considerably decreased. 

 

 

2. FORMULATION OF THE OPTIMIZATION PROBLEM 
 

The optimum shape design of double-layer grids subjected to earthquake loading is to find the 

optimum values for cross-sectional area of the elements, the number of the divisions in two 

directions and the height between two layers. General formulation of the optimization problem 

can be presented as follows: 
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where W(X) represents the objective function, k , Ak and lk  are density, cross sectional area 

and length of the kth element, respectively and ne is the number of the structural elements; 

g(X) is the design constraint; m and n are the number of the constraint and the design variables, 

respectively. A given set of discrete values is expressed by R
d
 and design variables Xi can take 

values only from this set. N is the number of divisions in x and y directions and H is the height 

between two layers. 

The constraints of the optimization problem are handled by using the concept of the 

penalty function as follows: 
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where 
k  and max

k  are the current and the maximum allowable stress in kth element 

respectively; 
k and max

k  are the current and the maximum value of the slenderness in the kth 

element; 
k and max

k  are the current and the maximum allowable displacement in ith joint of the 

structure respectively; Φ is the pseudo objective function; k

 , k

  and i

  are the stress, 

slenderness and nodal deflection penalties, respectively. 

 

 

3. PARTICLE SWARM OPTIMIZATION ALGORITHM 
 

In this section, at first the fundamental concepts of PSO is generally described then the 

concepts of the QPSO are explained. 

 

3.1 Classical Particle Swarm Optimization 

PSO is a population based optimization algorithm. The population in PSO is called swarm and 

each individual in population of PSO is called particle. Each particle of the swarm represents a 

potential solution of the optimization problem. This optimization method first presented by 

Kennedy and Eberhart [14]. The particles fly through the search space and their positions 

updated based on the best positions of individual particles in each iteration. Using following 

equations the position of the particles is updated: 
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where Xi and Vi represent the current position and the velocity of the ith particle 

respectively; k

i,P  best
is the best previous position of the ith particle (called pbest) and kGbest

 is 

the best global position among all the particle in the swarm (called gbest); Positive constants 

c1 and c2 are the cognitive and social components, respectively; r1 and r2 are two uniform 

random sequences generated from range (0,1) and  is the inertia weight used discount the 

previous velocity of the particle persevered. 

Due to the importance of ω  in achieving efficient search behavior the optimal updating 

criterion is taken as: 
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where 
maxω and 

inmω are the maximum and minimum values of ω , respectively. Also,
maxk , 

and k are the number of maximum iterations and the number of present iteration, 

respectively. 
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3.2 Quantum Particle Swarm Optimization 

In the recent decades, novel optimization methods have been proposed based on the 

concepts of quantum mechanics [15–17]. QPSO is one of the novel optimization methods 

based on quantum mechanics. In term of classical mechanics, a particle is depicted by 

position and velocity vectors which determine the trajectory of the particle. The particle 

moves along the determined trajectory in Newtonian mechanics but this is not in the 

quantum mechanics. In quantum world, the term trajectory is meaningless, because Xi and 

Vi of a particle cannot be determined simultaneously according to the uncertainty principle. 

Therefore if the individual particles in a PSO system have a quantum behavior, the PSO 

algorithm is bound to work in different fashion [18-19]. In QPSO algorithm, the position of 

a particle cannot be determined according to uncertainty principle. In this case, the state of a 

particle is depicted by wave function (x,t), instead of velocity and position. Thus in QPSO 

the particle can only learn the probability of its appearance in position X from probability 

density function (|(x,t)|
2
), the form of which depends on the potential field the particle lies 

in. Employing the Monte Carlo method, the particles move according to the following 

equation [18-20]: 
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where Pi is the local attractor of ith particle; β is a design parameter called contraction–

expansion coefficient [21]; u and γ are values generated using the uniform probability 

distribution functions in the range [0, 1].

 The global point called Mainstream Thought or Mean Best (Mbest) of the population is 

defined as the mean of the pbest positions of all particles and is given as follows: 
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where np is the number of the particles in the swarm.

 According to the convergence analysis of the original PSO, the convergence of the PSO 

algorithm may be achieved if each particle converges to its local attractor [21]. The local 

attractor to guarantee convergence of the PSO is presented as follows: 
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The flowchart of the QPSO is shown in Figure 1. 

Despite the efficiency of the QPSO compared with PSO, the optimization process 

requires a great number of time history analyses; thus the overall time of the optimization 

process is still very long. In this paper to reduce the computational burden, RBF neural 

network is employed. As the number of divisions in two directions (N) and the height 

between two layers (H) are also variables, a single RBF may not properly predict the 
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structural responses. Thus in this paper, a set of RBF neural networks are employed.  In the 

next section the RBF neural network is generally explained. 

 

 

Figure 1. Flowchart of the QPSO 

 

 

4. RADIAL BASIS FUNCTION NEURAL NETWORKS 
 

One of the most popular neural network techniques is RBF due to its fast training, generality 

and simplicity [13]. The hidden layer consists of RBF neurons with Gaussian activation 

functions. The outputs of RBF neurons have significant responses to the inputs only over a 

range of values called the receptive field. The radius of the receptive field allows the 

sensitivity of the RBF neurons to be adjusted. During the training, the receptive field radius 

of RBF neurons is such determined that the neurons could cover the input space.  

To train the hidden layer of RBF networks no training is accomplished and the transpose 

of training input matrix is taken as the layer weight matrix [13]. 

 

 
T
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where WL1
and TΠ are the input layer weight and training input matrices, respectively. 

In order to adjust output layer weights, a supervised training algorithm is employed. The 

output layer weight matrix is calculated from the following equation 
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T is the target matrix, O is the outputs of the hidden layer and WL2
 is the output layer weight 

matrix. 

A successful application of RBF in the case of double-layer grids was reported in [22]. 

 

 

5. NUMERICAL RESULTS 
 

In this paper, square-on-square double-layer grids with the span length of 20 m are considered. 

The structure is subjected to the gravity loading and the vertical component of Tabas 

earthquake (1978) record, shown in Figure 2. 

The number of divisions in both directions, N, varies between 4 and 7. The height between 

the top and bottom layers, H, is varied between 0.7 m and 1.9 m by the increment of 0.4 m. 

Each of the top, web and bottom layers is divided into three groups. For example the grouping 

details corresponding to 7 divisions are shown in Figure 3. 
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Figure 2. Vertical component of the Tabas earthquake (1978) 

 

 

Figure 3. Grouping details for 7 divisions 
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The similar patterns exist for divisions of 4 to 6 but those are neglected to show here.  

The cross sections of the element groups can be chosen from the pipe sections given in 

Table 1. In this table, d and t are the external diameter and thickness of the pipe sections, 

respectively. 

 

Table 1: Available cross-sectional areas 

t (cm) d (cm) NO. t (cm) d (cm) NO. 

0.59 21.91 11 0.32 8.89 1 

0.63 21.91 12 0.40 10.16 2 

0.71 21.91 13 0.50 11.43 3 

0.88 21.91 14 0.56 11.43 4 

0.80 24.45 15 0.56 13.97 5 

1.00 24.45 16 0.63 13.97 6 

1.10 24.45 17 0.63 15.90 7 

0.71 32.39 18 0.50 16.83 8 

0.88 32.39 19 0.63 19.37 9 

1.00 35.56 20 0.50 21.91 10 

 

The structure is simply supported at the corner nodes of the bottom layer. Young modulus 

is 2.1×10
6
 kg/cm

2
 and mass density is 7850 kg/m

3
. The aim is to achieve the optimum shape 

and size design of the structure subjected to uniformly distributed gravity load of 150 kg/m
2
 on 

the top layer and the Tabas earthquake (1978) record, shown in Fig 2, applied in the vertical 

direction. 

The allowable absolute values of tension stress, compressive stress and slenderness of the 

elements are 1400.0 kg/cm
2
, 1000.0 kg/cm

2
, and 200.0, respectively. The allowable deflection 

is also considered 5.0 cm. 

In order to reduce the computational time of shape and sizing optimization problem, a set 

of 16 RBF neural networks are trained to predict the necessary structural responses during 

the optimization process. In this case, for each number of divisions four RBF neural network 

model corresponding to the heights of 0.7 m, 1.1 m, 1.5 m and 1.9 m are trained. The input 

and output of the RBF neural networks given by Eqs (17) and (18) are the vector of cross 

sections of groups 1 to 9 and the vector of maximum stresses of each element groups and 

maximum deflection, respectively. 
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The set of RBF neural networks employed during the optimization process are shown in 

Figure 4. 
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Figure 4. Neural network model comprising 16 RBF neural networks 

 

To train each of the RBF neural networks, a number of 100 samples are generated and 

are analyzed for the mentioned static and dynamic loadings by FEM. In this sequence 1600 

exact analysis are performed with overall computational time of 386.0 min. For each RBF 

neural network 80 and 20 samples are used to achieve training and testing tasks, 

respectively. The errors between exact and approximate deflections (eδ) and stresses (eσ) are 

computed as follows: 
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The results of testing are given in Table 2 in terms of mean of error percentage of the test 

data. The results of this table indicate that the performance generality of the trained RBF 

neural networks is acceptable and those can be used during the optimization process to 

predict the analysis results. The optimization results of the double-layer grid are given in 

Table 3. The convergence histories of the optimization processes are also shown in Figure 5. 
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Table 2: Testing results of the 16 RBF neural networks in terms of mean error percentage  

Neural Network 
Mean of errors (%) 

Ave. 
eσ,1 eσ,2 eσ,3 eσ,4 eσ,5 eσ,6 eσ,7 eσ,8 eσ,9 eδ 

RBF 1 13.9 12.0 5.4 9.9 7.1 6.1 6.3 4.1 4.2 7.5 7.7 

RBF 2 11.1 7.9 4.1 7.1 6.8 5.2 6.1 4.5 4.4 6.2 6.3 

RBF 3 11.3 11.1 4.6 9.6 10.1 6.1 8.4 6.7 3.7 5.1 7.7 

RBF 4 15.4 14.5 5.5 13.1 9.3 4.5 8.1 7.8 4.9 8.4 9.2 

RBF 5 10.1 8.2 6.7 10.1 7.7 7.2 8.3 9.9 5.1 8.3 8.2 

RBF 6 10.8 9.5 3.7 8.4 7.1 6.9 6.9 5.6 4.2 6.1 6.9 

RBF 7 9.3 7.5 4.8 7.8 6.6 5.9 9.1 8.9 3.5 5.4 6.9 

RBF 8 13.8 8.6 6.1 10.3 8.6 5.9 8.1 8.4 3.6 5.4 7.9 

RBF 9 9.8 9.7 5.5 7.5 9.5 5.2 8.9 10.3 6.9 10.5 8.4 

RBF 10 9.1 8.4 3.5 5.4 8.7 4.1 6.9 6.9 4.0 5.4 6.2 

RBF 11 11.6 9.2 3.4 6.4 6.9 4.6 7.1 7.8 3.4 7.5 6.8 

RBF 12 10.1 10.1 5.9 10.2 7.2 5.9 8.9 7.2 4.9 7.5 7.8 

RBF 13 9.8 7.3 4.9 7.7 6.6 5.1 8.2 6.8 4.8 5.4 6.7 

RBF 14 9.9 8.4 5.7 9.9 10.3 5.4 11.1 9.9 5.9 5.2 8.2 

RBF 15 12.1 6.3 4.1 6.4 7.4 4.2 7.3 6.7 3.5 6.6 6.5 

RBF 16 9.7 8.2 5.4 12.3 6.5 5.9 7.6 7.3 4.4 4.6 7.2 

 

The results demonstrate that QPSO is superior to PSO in terms of optimal weight and the 

number of required iterations. 

 

Table 3: Optimum design results of various methods (d×t) 

QPSO PSO 
Design variables 

FEM RBF FEM RBF 

8.89×0.32 8.89×0.32 8.89×0.32 8.89×0.32 csG1 

11.43×0.50 11.43×0.50 11.43×0.56 11.43×0.50 csG2 

16.83×0.50 13.97×0.63 19.37×0.63 16.83×0.50 csG3 

8.89×0.32 8.89×0.32 8.89×0.32 8.89×0.32 csG4 

8.89×0.32 8.89×0.32 8.89×0.32 8.89×0.32 csG5 

13.97×0.56 13.97×0.56 16.83×0.50 13.97×0.56 csG6 

8.89×0.32 8.89×0.32 8.89×0.32 8.89×0.32 csG7 

10.16×0.40 8.89×0.32 11.43×0.50 8.89×0.32 csG8 

19.37×0.63 13.97×0.56 21.91×0.59 19.37×0.63 csG9 

7 7 7 7 N 
1.90 1.90 1.90 1.90 H (m) 

13030.53 12323.54 14149.43 12681.14 Weight (kg) 

78 57 127 126 Iteration 

- 386.0 - 386.0 Training time (min.) 

932.6 1.4 1509.1 2.9 Optimization time (min.) 

932.6 387.4 1509.1 388.9 Overall time (min.) 
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Figure 5. Convergence histories of various optimization methods 

 

Stress ratios of the optimum designs found by PSO and QPSO using FEM are shown in 

Figures 6 and 7, respectively. The maximum deflections of these optimum designs are also 

4.88 cm and 4.95, respectively which are less than their allowable values. 
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To assess the feasibility of the solutions found by PSO and QPSO using RBFs the final 

solutions are analyzed by FEM and their element stress ratios and maximum deflections are 

computed. These computed values are denoted as actual stress ratios. The stress ratios 
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predicted by RBFs are compared with their corresponding actual values in Figures 8 and 9, 

respectively. The maximum deflections of these optimum designs evaluated by RBF16 are 

4.41 and 4.31 cm and their actual values evaluated by FEM are also 5.03 cm and 4.98, 

respectively. 
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Figure 9. Stress ratios of the optimum design found by QPSO using RBFs 

 

The results reveal that however all of the stress ratios predicted by RBF16 are less than 1.0 

but in some of the element groups the corresponding actual values are slightly greater than 

1.0. This is a numerical problem which can be totally removed by improving the 

performance generality of the neural network model using more training samples. 

 

 

6. CONCLUSIONS 
 

In this paper, a combination of meta-heuristic optimization algorithms and neural networks 

are employed for optimum shape design of double-layer grids subject to gravity and 

earthquake loadings. PSO and QPSO meta-heuristics algorithms are used for achieving the 

optimization task. The computational burden of the optimization due to performing time 

history analysis is generally high. In order to mitigate this computational rigor, RBF neural 

networks are trained to predict the structural responses required during the optimization 

process. Due to this fact that the number of divisions and the height between two layers are 

treated as design variables, a single RBF cannot efficiently predict the structural responses. 

In this study a set of RBF neural networks are employed to achieve the prediction task. The 

optimization results show that the QPSO algorithm incorporating RBF neural networks, 
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denoted as QPSO-RBF, converges to optimum design with a weight of 12323.54 kg by 57 

generations which is better than 12681.14 kg associated with the PSO-RBF by 126 

generations. It is also observed that the QPSO-FEM find the optimal weight of 13030.53 kg 

with 78 generation which is better than 14149.43 kg of PSO-FEM with 127 generations. 

These results demonstrate that QPSO converges to better solutions with a lower 

computational cost compared with PSO. The overall computational time of optimization by 

PSO using RBF neural networks, including data generation and training times, is about 0.26 

times the time required by PSO using FEM. In the case of QPSO this ratio is about 0.4. It 

can be therefore concluded that the complex problem of double-layer grids shape 

optimization subject to earthquake loading can be efficiently tackled by QPSO meta-

heuristic using RBF neural networks spending low computational cost. 
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